- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Braendle, Christian (2)
-
Félix, Marie-Anne (2)
-
Rockman, Matthew V. (2)
-
Stevens, Lewis (2)
-
Andersen, Erik C. (1)
-
Baugh, L. Ryan (1)
-
Beltran, Toni (1)
-
Blaxter, Mark (1)
-
Caurcel, Carlos (1)
-
Chirakar, Rojin (1)
-
Cook, Daniel E. (1)
-
Crombie, Timothy A. (1)
-
Fabig, Gunar (1)
-
Farhadifar, Reza (1)
-
Fausett, Sarah (1)
-
Fitch, David (1)
-
Frézal, Lise (1)
-
Gosse, Charlie (1)
-
Kaur, Taniya (1)
-
Kiontke, Karin (1)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)The spindle shows remarkable diversity, and changes in an integrated fashion, as cells vary over evolution. Here, we provide a mechanistic explanation for variations in the first mitotic spindle in nematodes. We used a combination of quantitative genetics and biophysics to rule out broad classes of models of the regulation of spindle length and dynamics, and to establish the importance of a balance of cortical pulling forces acting in different directions. These experiments led us to construct a model of cortical pulling forces in which the stoichiometric interactions of microtubules and force generators (each force generator can bind only one microtubule), is key to explaining the dynamics of spindle positioning and elongation, and spindle final length and scaling with cell size. This model accounts for variations in all the spindle traits we studied here, both within species and across nematode species spanning over 100 million years of evolution.more » « less
-
Lee, Daehan; Zdraljevic, Stefan; Stevens, Lewis; Wang, Ye; Tanny, Robyn E.; Crombie, Timothy A.; Cook, Daniel E.; Webster, Amy K.; Chirakar, Rojin; Baugh, L. Ryan; et al (, Nature Ecology & Evolution)null (Ed.)
-
Stevens, Lewis; Félix, Marie-Anne; Beltran, Toni; Braendle, Christian; Caurcel, Carlos; Fausett, Sarah; Fitch, David; Frézal, Lise; Gosse, Charlie; Kaur, Taniya; et al (, Evolution Letters)Abstract The nematode Caenorhabditis elegans has been central to the understanding of metazoan biology. However, C. elegans is but one species among millions and the significance of this important model organism will only be fully revealed if it is placed in a rich evolutionary context. Global sampling efforts have led to the discovery of over 50 putative species from the genus Caenorhabditis, many of which await formal species description. Here, we present species descriptions for 10 new Caenorhabditis species. We also present draft genome sequences for nine of these new species, along with a transcriptome assembly for one. We exploit these whole-genome data to reconstruct the Caenorhabditis phylogeny and use this phylogenetic tree to dissect the evolution of morphology in the genus. We reveal extensive variation in genome size and investigate the molecular processes that underlie this variation. We show unexpected complexity in the evolutionary history of key developmental pathway genes. These new species and the associated genomic resources will be essential in our attempts to understand the evolutionary origins of the C. elegans model.more » « less
An official website of the United States government
